The Hyper-Wiener Polynomial of Graphs

Authors

  • A.R. Ashrafi
  • G.H. Fath-Tabar
Abstract:

The distance $d(u,v)$ between two vertices $u$ and $v$ of a graph $G$ is equal to the length of a shortest path that connects $u$ and $v$. Define $WW(G,x) = 1/2sum_{{ a,b } subseteq V(G)}x^{d(a,b) + d^2(a,b)}$, where $d(G)$ is the greatest distance between any two vertices. In this paper the hyper-Wiener polynomials of the Cartesian product, composition, join and disjunction of graphs are computed.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Computing Wiener and hyper–Wiener indices of unitary Cayley graphs

The unitary Cayley graph Xn has vertex set Zn = {0, 1,…, n-1} and vertices u and v are adjacent, if gcd(uv, n) = 1. In [A. Ilić, The energy of unitary Cayley graphs, Linear Algebra Appl. 431 (2009) 1881–1889], the energy of unitary Cayley graphs is computed. In this paper the Wiener and hyperWiener index of Xn is computed.

full text

Wiener Matrix Sequence, Hyper-Wiener Vector, Wiener Polynomial Sequence and Hyper-Wiener Polynomial of Bi-phenylene

The Wiener matrix and the hyper-Wiener number of a tree (acyclic structure), higher Wiener numbers of a tree that can be represented by a Wiener number sequence W, W,W.... whereW = W is the Wiener index, and R W k K    ,.... 2 , 1 is the hyper-Wiener number. The concepts of the Wiener vector and hyper-Wiener vector of a graph are introduced for the molecular graph of bi-phenylene. Moreover, ...

full text

MORE ON EDGE HYPER WIENER INDEX OF GRAPHS

‎Let G=(V(G),E(G)) be a simple connected graph with vertex set V(G) and edge‎ ‎set E(G)‎. ‎The (first) edge-hyper Wiener index of the graph G is defined as‎: ‎$$WW_{e}(G)=sum_{{f,g}subseteq E(G)}(d_{e}(f,g|G)+d_{e}^{2}(f,g|G))=frac{1}{2}sum_{fin E(G)}(d_{e}(f|G)+d^{2}_{e}(f|G)),$$‎ ‎where de(f,g|G) denotes the distance between the edges f=xy and g=uv in E(G) and de(f|G)=∑g€(G)de(f,g|G). ‎In thi...

full text

computing wiener and hyper–wiener indices of unitary cayley graphs

the unitary cayley graph xn has vertex set zn = {0, 1,…, n-1} and vertices u and v areadjacent, if gcd(uv, n) = 1. in [a. ilić, the energy of unitary cayley graphs, linear algebraappl. 431 (2009) 1881–1889], the energy of unitary cayley graphs is computed. in this paperthe wiener and hyperwiener index of xn is computed.

full text

the hyper edge-wiener index of corona product of graphs

let $g$ be a simple connected graph. the edge-wiener index $w_e(g)$ is the sum of all distances between edges in $g$, whereas the hyper edge-wiener index $ww_e(g)$ is defined as {footnotesize $w{w_e}(g) = {frac{1}{2}}{w_e}(g) + {frac{1}{2}} {w_e^{2}}(g)$}, where {footnotesize $ {w_e^{2}}(g)=sumlimits_{left{ {f,g} right}subseteq e(g)} {d_e^2(f,g)}$}. in this paper, we present explicit formula fo...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 6  issue None

pages  67- 74

publication date 2011-11

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023